Studies on the Reactions between Oxides in Solid State at Higher Temperatures. V.(1) The Reaction between Magnesium Oxide and Aluminium Oxide.(2)

By Yasuo TANAKA.

(Received December 16, 1941.)

There exists only one addition compound, spinel Introduction. $(MgO \cdot Al_2O_3)$, in the system magnesium oxide and aluminium oxide. This compound belongs to the cubic system with a unit cell, consisting of 8 molecules of MgO·Al₂O₃ and is able to contain an excess of aluminium oxide forming a solid solution. According to Hägg and Söderholm, (3) the lattice constant of pure MgO Al_2O_3 is a=8.056Å, and at the Al_2O_3 the richest limit of the solid solution with $\alpha-Al_2O_3$, which lies at about 67 mol % of Al₂O₃, or corresponds approximately to MgO·2Al₂O₃, and it decreases to $a=7.968\text{\AA}.^{(4)}$ They have stated further that the density of the solid solution is explained only under the assumption that the positions of the oxygen lattices are unchanged, and an excess of aluminium atoms exists by replacing the positions of the magnesium atoms and leaving a part of them unoccupied.

The solid reactions of the formation of MgO·Al₂O₃ and those of the other spinel type compounds, especially those at lower temperatures, have been studied by many investigators. (5) However, there is no report in which the velocity of their formations has been followed quantitatively. Also the composition of the solid solution, formed at the first stage, is not certain. The present research is carried out with a view to make these two points clear and, further, to compare the results with those of the reactions in the previous papers. (6) (7) (8) (1) The experimental procedure was almost the same as before.

I. Reaction products at 1400°. Mixtures of MgO and Al₂O₃, corresponding to MgO:Al₂O₃=2:1, 1:1 and 1:2, were heated at 1400° for 10 hours; the amounts of free MgO of the products were determined and their X-ray photographs were taken. The results are given in Table 1.

⁽¹⁾ IV, This Bulletin, 17 (1942), 70.

⁽²⁾ The main part of this paper has been published in Japanese in J. Chem. Soc. Japan, 62 (1941), 477.

⁽³⁾ G. Hägg and G. Söderholm, Z. physik. Chem., B, 29 (1935), 88.

⁽⁴⁾ The limit of solubility differs somewhat with the temperature. It differs also with the modifications of Al₂O₃, and the range of the unstable solid solution spreads to γ -Al₂O₈.

⁽⁵⁾ For instance, W. Jander and W. Stamm, Z. anorg. allgem. Cham., 199 (1931), 165; G. Hüttig and E. Zeidler, Kolloid-Z., 75 (1936), 309; K. Hild, Z. physik. Chem., A, 161 (1936), 317; W. Jander and H. Pfister, Z. anorg. allgem. Chem., 239 (1938), 95.

⁽⁶⁾ I, This Bulletin, 16 (1941), 428.
(7) II, This Bulletin, 16 (1941), 455.

⁽⁸⁾ III, This Bulletin, 17 (1942), 64.

Since the reaction product, $MgO \cdot Al_2O_3$, as well as Al_2O_3 , heated at higher temperatures (α - Al_2O_3), are insoluble even in concentrated acids, it is impossible to separate the reaction product from the unreacted Al_2O_3 .

Table 1. Reaction products at 1400°.

Mixing ratio MgO: Al ₂ O ₃	Free MgO	Lattice constant of the spinel formed. (Å)		
2:1	21.18	8.05_{1}		
1:1	3.06	8.03_{8}		
1:2	0.72	8.007		

It was understood that, with a mixture of MgO:Al₂O₃=2:1, the reaction was completed forming pure MgO·Al₂O₃, because the calculated amount of free MgO was 22.08%, (9) and the lattice constant of the spinel obtained coincided with that of pure spinel, given by Hägg and Söderholm. (3) With a mixture of MgO:Al₂O₃=1:2, the lattice constant of the spinel became considerably smaller, and

the interference lines of α -Al₂O₃ were observed distinctly at the same time.

II. Course of the reaction between 800° and 1200°. The course of the reaction was followed by determining free MgO of the products, and some of the products were studied by the X-ray method. Preparations were ignited before use.

As shown in Table 2, the reaction took place already considerably at 800°, but it was never completed even at 1200°. The lattice constants of the spinels in these products agreed approximately with that of pure MgO·Al₂O₃, and the positions of the interference lines of MgO and of α -Al₂O₃ were also unchanged.

Table 2. Free MgO (%) of the reaction products.

(1) $MgO: Al_2O_3 = 1:2 (MgO = 16.51\%).$										
Reaction time (hrs.)		0.5	· 1	3	6	10				
Reaction temperature (°C) \dots	800		15.27	14.90	14.55	14.30				
	900		13.43	13.08	12.19	11.30				
	1000	12.96	10.94	10.00	8.85	8.35				
	1100	7.38	6.60	5.73	5.29					
	1200	4.85	4.17	3.56	3.08	2.95				
(2) $MgO: Al_2O_3 = 1:1$ ($MgO = 28.34\%$).										
Reaction time (hrs.)		0.5	1	3	6	10				
Reaction temperature (°C) \dots	800		26.49	26.03	25.81	25.28				
	900		24.97	23.73	23.57	22.26				
	1000	23.49	22.49	20.75	19.21	18.21				
	1100	17.56	15.78	14.69	13.03					
	1200	12.90	12.18	10.58	9.47	8.61				
•										

⁽⁹⁾ Although free MgO obtained is slightly smaller than this value, its smaller value cannot be avoided when the amount of which is practically too much.

Table 2.—(Concluded)

(3)
$$MgO: Al_2O_3 = 1:2$$
 (MgO = 44.17%).

Reaction time (hrs.)		0.5	1	3	6	10
	800	41.71	41.17	40.61	40.77	40.39
Reaction temperature (°C)	900	39.98	39.40	38.40	37.87	37.21
) 1000	36.66	36.14	34.95	34.56	
	1100	31.61	29.89	28.16	27.20	

III. Discussion of the results. It is obvious from the above experiments that pure MgO·Al₂O₃, which is the richest in the basic component, MgO, within the possible range of the solid solution, is formed at the early stage of the reaction, whatever the mixing ratio of the components may be. It seems that, only with the mixtures containing an excess of Al₂O₃, the solid solution, rich in Al₂O₃, is formed after the greater part of MgO has been reacted to form MgO·Al₂O₃. The tendency is quite reverse to that of the reaction between CaO and TiO₂,⁽⁷⁾ in which the composition of the solid solution, formed at first, is the richest in the acid component. While the lattice constant of the spinel, obtained with a mixture of MgO·Al₂O₃=1:1 at 1400°, is a little smaller than that of pure MgO·Al₂O₃, it is considered that, even in a stoichiometric mixture, the solid solution, rich in Al₂O₃, is formed locally where Al₂O₃ exists in excess toward the end of the reaction, leaving a part of MgO in free state.

As the lattice constant of the spinel, $a=8.00_7\text{\AA}$, obtained with a mixture of MgO·Al₂O₃=1.2 at 1400°, is 0.04_4\AA smaller than that of pure MgO·Al₂O₃, $a=8.05_1\text{\AA}$, it is calculated that the spinel in this case contains approximately the excess of 8.5 mol % Al₂O₃, in forming a solid solution. Hägg and Söderholm⁽³⁾ confirmed the limit of the solid solution by fusing the components. It is also expected, by the solid reaction, that a solid solution with more Al₂O₃ is obtained when the reaction proceeds further.

In the present reaction, there exists a rapid initial reaction just as in the reactions between MgO or CaO and TiO_2 . A further reaction seems to be controlled by the diffusion of the components through the reaction product; the energy of activation of the process with a stoichiometric mixture is calculated as Q=41.1 Kilocalories per mole, and the value is nearly equal to those of the above two reactions.

Finally, when the influence of the mixing ratio of the components on the rate of the present reaction is considered, it is found that the reaction takes place more readily with a mixture of $MgO:Al_2O_3=2:1$, namely, when MgO exists in excess, than with the other mixtures. This cause will be discussed in the next paper.

Summary.

- (1) It has been found that pure $MgO \cdot Al_2O_3$ is formed at first in this reaction, and the solid solution rich in Al_2O_3 is formed gradually when an excess of Al_2O_3 is present.
- (2) Although there exists a rapid initial reaction, the later reaction is controlled by the diffusion process with an energy of activation of 41.1 Kilocalories per mole.

(3) The reaction proceeds more easily with the mixtures containing an excess of MgO than with the other mixtures.

The author expresses his sincere thanks to Dr. R. Yoshimura, Director of the Department, for his interest in this work. He is also indebted to Mr. K. Oguro and Mr. T. Sugawa for their assistances with the experiments and to the Physics Section of the Laboratory for taking the X-ray photographs.

Department of Inorganic Chemistry, the Central Laboratory, South Manchuria Railway Company, Dairen.